prepareInputToAllocation2.Rd
In case of scenario 2 (at least one previous round of the survey available), prepares the following input dataframes for R2BEAT two-stages sample design starting from the sampling frame: 1. strata 2. deff 3. effst 4. rho 5. PSU_file 6. des_file
prepareInputToAllocation2 (
samp_frame,
RGdes,
RGcal,
id_PSU,
id_SSU,
strata_var,
target_vars,
deff_var,
domain_var,
delta,
minimum)
The dataframe containing sampling units in the reference population.
The 'design' ReGenesees object.
The 'calibration' ReGenesees object.
variables used as identifiers in sampling frame.
variables used as identifiers in sampling frame.
stratification variable used in sampling frame.
target variables.
stratification variable to be used when calculating deff.
the variable used to identify the domain of interest.
average number of analysis units per sampling unit.
minimum number of SSU to be selected from a PSU.
A list containing: (1) strata, (2) deff, (3) effst, (4) rho, (5) PSU_file, (6) des_file
if (FALSE) {
library(readr)
samp <- read_rds("https://github.com/barcaroli/R2BEAT_workflows/blob/master/sample.rds?raw=true")
pop <- read_rds("https://github.com/barcaroli/R2BEAT_workflows/blob/master/pop.RDS?raw=true")
library(R2BEAT)
str(samp)
## Sample design description
library(ReGenesees)
samp$stratum_2 <- as.factor(samp$stratum_2)
sample.des <- e.svydesign(samp,
ids= ~ municipality + id_hh,
strata = ~ stratum_2,
weights = ~ weight,
self.rep.str = ~ SR,
check.data = TRUE)
## Find and collapse lonely strata
ls <- find.lon.strata(sample.des)
if (!is.null(ls)) sample.des <- collapse.strata(sample.des)
## Calibration with known totals
totals <- pop.template(sample.des,
calmodel = ~ sex : cl_age,
partition = ~ region)
totals <- fill.template(pop, totals, mem.frac = 10)
sample.cal <- e.calibrate(sample.des,
totals,
calmodel = ~ sex : cl_age,
partition = ~ region,
calfun = "logit",
bounds = c(0.3, 2.6),
aggregate.stage = 2,
force = FALSE)
samp_frame <- pop
RGdes <- sample.des
RGcal <- sample.cal
strata_var <- c("stratum")
target_vars <- c("income_hh",
"active",
"inactive",
"unemployed")
weight_var <- "weight"
deff_var <- "stratum"
id_PSU <- c("municipality")
id_SSU <- c("id_hh")
domain_var <- c("region")
delta <- 1
minimum <- 50
inp <- prepareInputToAllocation2 (
samp_frame,
RGdes,
RGcal,
id_PSU,
id_SSU,
strata_var,
target_vars,
deff_var,
domain_var,
delta,
minimum)
head(inp$strata)
head(inp$deff)
head(inp$effst)
head(inp$rho)
head(inp$psu_file)
head(inp$des_file)
}